Nutrients and Bloom-forming Cyanobacteria in a Mesotrophic Lake

Julia Sese, Michael E. Kausch, John D. Wehr
Louis Calder Center - Biological Station, Fordham University, Armonk, NY, USA

Background

- Globally recognized water quality crisis
- Elevated concentrations of nutrients → rapid cyanobacterial growth
- Depleted nutrients, hypoxic water, toxins (microcystins)
- Limiting Factors: Nitrogen and Phosphorus

Objectives

- Determine the effects of nutrient addition on phytoplankton biomass
- Determine the effect of dissolved N on abundance of cyanobacteria
- Determine the effect of different forms of dissolved N on cyanobacteria species composition

Predictions

- Increased phytoplankton biomass with added N and P
- Increased cyanobacteria at higher concentrations of N
- Non N-fixing cyanobacteria more abundant in elevated NH₄⁺ than in NO₃⁻

Design

- Lake Microcosm Experiment
- Low and high concentrations of N
- All receive excess concentrations of P
- Concentrations derived from Redfield (16:1)

Controls

- P₀ = 0
- A: Low [N] +15 µM N/L
- B: High [N] +50 µM N/L

Experimental

- C: NO₃⁻ (Low)
- D: NH₄⁺ (Low)
- E: NH₄⁺ + NH₄⁺ ([NH₄]₂CO)
- G: Urea (Low)
- I: Urea (High)

Experiment

- 4 liter cubitainers
- Whole lake water from Calder Lake in Armonk, NY.
- 3 replicates
- Nutrients added: NH₄⁺, NO₃⁻, NH₄NO₃, urea
- 4 day incubation in situ

Results

Chlorophyll-a: Phosphorus +/- N
- Control Treatments (no N added)
- No significant effect adding P (+ 2 µM)
- N is the main factor for algal blooms in Calder Lake

Chlorophyll-a: Low [N] +15 µM N/L
- NO₃⁻: Control
- NH₄⁺: Control
- NH₄NO₃: Control
- Urea: Control

Chlorophyll-a: High [N] +50 µM N/L
- NO₃⁻: Control
- NH₄⁺: Control
- NH₄NO₃: Control
- Urea: Control

Species Composition

- NO₃⁻ (High and Low N)
 - *Sphaerocystis schroeteri*
 - *Oocystis lacustris*
 - *Dolichospermum planctonicum*
 - *Woronichinia naegeliana*
 - *Microcystis aeruginosa*
 - *Aulacoseira sp.*

- NH₄⁺ (High N)
 - *Oocystis lacustris*
 - Similar to NO₃⁻ treatments
 - Much less abundant

- NH₄NO₃ (Low N)
 - Mixed green algae
 - Small diatoms

- NH₄NO₃ (High N)
 - *Oocystis sp.*
 - Small diatoms

- Urea (High N)
 - Motile green algae
 - Colonial Green Algae
 - *Staurastrum sp.*
 - Diatoms

Acknowledgements

The author would like to acknowledge Tim Wong and Kimarie Yap for helping processing samples and R.C. Rizzitelli, Alissa Perrone, Petra Del Valle, and Mike Lambros for all of their technical work at the Louis Calder Center Biological Station at Fordham University.