PHYS 1702 – Physics II
Summer Session II, 2020

Professor: Dr. Christopher Aubin, Freeman 111B
Phone: x5620, Email: caubin@fordham.edu

Meeting Times: M T W R 9:00 - 12:00 – Freeman 105
Office Hours: Immediately following class and by appointment

Required Materials:
- Openstax.org text: University Physics Vols. 1 & 2:
 - https://openstax.org/details/books/university-physics-volume-1
- Subscription to WebAssign (Class Key: fordham 7710 1202)
- 16 3”x5” index cards

Course Description (from the bulletin)
Continuation of PHYS 1701.

Other useful texts
There are plenty of good calculus-based textbooks around if you want other sources besides the free online text we are using. I would suggest Physics for Scientists & Engineerings, by Giancoli; Fundamentals of Physics, by Halliday, Resnick, and Walker; or Physics for Scientists and Engineers, by Serway and Jewett as possibilities.

Grade Policy
- Online Problem Sets: 40% Quizzes: 20%
- Midterm: 20% Final: 20%

You are expected to show up to every lecture, and although attendance is not officially part of the grade policy, not attending the lectures will have a severely negative impact on your grade. Given that this is a summer course, each day corresponds to roughly a week’s worth of material from an ordinary semester.

Many files that I would like to share with you I will do so using Slack, which is a free collaboration tool. Use the link above to join the “Aubin Classes” group, where I will then add you to the “#phys1702” channel. Through this channel you can send messages to me alone or the entire class. Additionally, important announcements will be made through here, so I urge you to sign up immediately. When you send me messages through this app (either through the channel mentioned or a direct message), I will get them as quickly as I would a text, as opposed to email, which I check regularly but not constantly. [Note I am trying this out for class for the first time, so hopefully it’ll be a positive experience for all!]

Problem Sets
I will assign online problem sets roughly three times per week. They must be completed by the listed day/time, and no extensions will be granted. Each problem set has 17-44 available points (each part of a single problem is worth one point). Each problem set has an available maximum points given by 60% of the total possible. Any points above that value will be worth extra credit at 10% of its nominal value. Take for example, Homework 3, which has a total of 35 points available. To get a 100% you must get at least 0.6 × 35 = 21 points from the problems you solve. Let’s
suppose you only do the first eight problems which has 24 available points, and you get a nominal score of 23.2 (you lost some credit here and there unfortunately). Thus, your recorded grade for this homework set will be $21.22 = 21 + (0.10) \times (23.2 - 21)$. Of course you can skip plenty of problems and still get a perfect homework score, but I encourage you to do as much as possible, as you are responsible for all material on the assignments. (Your maximum grade for the homeworks can still only be 100% however.)

Additionally there are Tutorials and Practice Problems that are not graded but are for your own benefit.

Collaboration on these assignments is encouraged, because one learns physics best with other people. However, you will be expected to do your own work, and **cheating will not be tolerated**.

Quizzes

There will be *daily* quizzes at some point during the class. These will be an active part of the course where I will set up a problem and have you put your answers down on a 3”×5” index card (*not a piece of paper cut to be 3”×5”!* to turn in your solution. The idea is to have you think about a topic on your own whether or not we have covered the topic fully. There will be *no* make ups (that is, if you are not in class when we have the quiz, you cannot make it up)! However, I will drop the lowest 2 quizzes (including those that are missed) so if you miss one or two due to any unforeseen circumstances, it shouldn’t affect your final grade.

Exams/Final

All exams will be in-class and closed-book exams. You will be allowed an equation sheet of your own (one side of a standard letter-sized sheet of paper). The equation sheet can include formulas and equations, but no words (thus no definitions) and no solved problems. The two exams will cover roughly half of the material each, and while the final is not technically cumulative, realize that physics builds on all previously learned material, and thus the final may include material from the midterm, or even the first semester of this course. *There will also be no make-ups allowed for the exams, make note of those dates listed below (especially the final), and plan your travel accordingly!*

In-class technology policy:

Electronic devices are never to be used during class, as they are a distraction from the course, and demonstrate a lack of respect for your peers and myself. This means no calling, texting, emailing, browsing the web, etc. Additionally, silence and put away your phones before coming to class (*they should not even be visible*). If you are caught violating this policy, I will most likely ask you to leave, because there is no reason for you to be here if you’d rather be online, and each offense will result in a **5 point reduction** in your final grade. (If there is some legitimate reason for needing your device out, you may obtain permission only if you come to me to discuss the reason.)

The one exception to this rule is your calculator. There will be times when I will ask you all to evaluate expressions numerically for me, and in this case you can use a standard scientific or graphing calculator (not a smartphone or computer — those are still banned).
Tentative topics

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Topics</th>
<th>Chapters</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol. 1, Ch. 16</td>
<td>Waves</td>
<td>Vol. 2, Ch. 10</td>
<td>DC Circuits</td>
</tr>
<tr>
<td>Vol. 2, Ch. 5</td>
<td>Electric Charge & Field</td>
<td>Vol. 2, Ch. 11</td>
<td>Magnetic Forces & Fields</td>
</tr>
<tr>
<td>Vol. 2, Ch. 6</td>
<td>Gauss’s Law</td>
<td>Vol. 2, Ch. 12</td>
<td>Sources of Magnetic Fields</td>
</tr>
<tr>
<td>Vol. 2, Ch. 7</td>
<td>Electric Potential</td>
<td>Vol. 2, Ch. 13</td>
<td>Magnetic Induction</td>
</tr>
<tr>
<td>Vol. 2, Ch. 8</td>
<td>Capacitance</td>
<td>Vol. 2, Ch. 14-15</td>
<td>EM Inductance & AC Circuits</td>
</tr>
<tr>
<td>Vol. 2, Ch. 9</td>
<td>Current & Resistance</td>
<td>Vol. 2, Ch. 16</td>
<td>Electromagnetic Waves</td>
</tr>
</tbody>
</table>

Please note that Volume 3 of the OpenStax textbook covers Optics, which we might get to explicitly in this course. However, it is covered in the associated lab course.

Exam Dates:

| July 16 | Midterm | Aug. 4 | Final Exam |

Important note regarding disabilities

If you are a student with a documented disability and require academic accommodations, you need to register with the Office of Disability Services for Students (ODS) if you haven’t already done so. Please contact the main ODS office at Rose Hill at 718-817-0655 to arrange services. Please see me after class or during office hours if you have any questions. I am more than happy to help with any and all accommodations that you may require to help you succeed in this course.

By remaining enrolled in this course, you are agreeing to terms laid out in this syllabus.