Behind every great financial-services firm, one finds great quantitative analysts. The MS in Quantitative Finance program prepares students to fill these crucial roles, teaching them how to construct models, analyze data, and write programs. In addition to multiple programming languages, the curriculum covers mathematical and statistical modeling techniques, as well as financial technology, all framed in the context of actual financial problems.

APPLIED AND EXPERIENTIAL LEARNING

- Internship opportunities in top financial-services firms in New York City
- Research opportunities in machine learning, algorithmic trading, and financial analytics
- Seminar series with leading industry professionals

EXTRACURRICULAR ENGAGEMENT

- The Fordham Quantitative Finance Society aims to elevate students’ technical skills. Ongoing networking nights help students to best position themselves for the top financial-services firms.
- Research Centers:
 - Center for Research in Contemporary Finance
 - The Frank J. Petrilli Center for Research in International Finance

RECENT EMPLOYERS OF MSQF GRADUATES

Bank of America Merrill Lynch, Bloomberg, Citigroup, Credit Suisse, Deloitte, JPMorgan Chase, Moody’s, Morgan Stanley, Numerix, RBC Capital Markets, Société Générale,

CAREER PATHS

Financial Engineer, Quantitative Developer, Quantitative Researcher, Risk Analyst

ALUMNI PERSPECTIVE

“The Gabelli experience is not just about learning from the best, though that is part of it. More importantly, I find that the core values of hard work, curiosity, and honesty have stuck with me in both my career and my personal life.”

YUAN PENG, MSQF ’14
Associate, JPMorgan Chase

THE FOLLOWING PREREQUISITES ARE REQUIRED:

- Basics of Finance*
- Basics of Economics*
- Financial Accounting*
- Ordinary Differential Equations
- Mathematics
- Computer Programming
- Linear Algebra
- Multivariable Calculus

* These courses are available at the Gabelli School.

THE MS IN QUANTITATIVE FINANCE PROGRAM FOCUSES ON:

- Advanced finance theory
- Algorithmic trading
- Big data analytics in finance
- Blockchain applications in finance
- Computational finance
- Derivatives analytics
- Machine learning and econometrics
- R/Python/C++ for finance
- Risk management