Fordham


IHSP

Modern History


Full Texts Multimedia Search Help


Selected Sources Sections Studying History Reformation Early Modern World Everyday Life Absolutism Constitutionalism Colonial North America Colonial Latin America Scientific Revolution Enlightenment Enlightened Despots American Independence French Revolution Industrial Revolution Romanticism Conservative Order Nationalism Liberalism 1848 Revolutions 19C Britain British Empire History 19C France 19C Germany 19C Italy 19C West Europe 19C East Europe Early US US Civil War US Immigration 19C US Culture Canada Australia & New Zealand 19C Latin America Socialism Imperialism Industrial Revolution II Darwin, Freud, Einstein 19C Religion World War I Russian Revolution Age of Anxiety Depression Fascism Nazism Holocaust World War II Bipolar World US Power US Society Western Europe Since 1945 Eastern Europe Since 1945 Decolonization Asia Since 1900 Africa Since 1945 Middle East Since 1945 20C Latin America Modern Social Movements Post War Western Thought Religion Since 1945 Modern Science Pop Culture 21st Century
IHSP Credits

Internet Modern History Sourcebook

Thomas Henry Huxley:

The Method of Scientific Investigation, 1863


From a 1863 lecture series aimed at making science understandable to non-specialists. Extracted from Darwiniana, 1893


The method of scientific investigation is nothing but the expression of the necessary mode of working of the human mind. It is simply the mode at which all phenomena are reasoned about, rendered precise and exact. There is no more difference, but there is just the same kind of difference, between the mental operations of a man of science and those of an ordinary person, as there is between the operations and methods of a baker or of a butcher weighing out his goods in common scales, and the operations of a chemist in performing a difficult and complex analysis by means of his balance and finely graduated weights. It is not that the action of the scales in the one case, and the balance in the other, differ in the principles of their construction or manner of working; but the beam of one is set on an infinitely finer axis than the other, and of course turns by the addition of a much smaller weight.

You will understand this better, perhaps, if I give you some familiar example. You have all heard it repeated, I dare say, that men of science work by means of induction and deduction, and that by the help of these operations, they, in a sort of sense, wring from Nature certain other things, which are called natural laws, and causes, and that out of these, by some cunning skill of their own, they build up hypotheses and theories. And it is imagined by many, that the operations of the common mind can be by no means compared with these processes, and that they have to be acquired by a sort of special apprenticeship to the craft. To hear all these large words, you would think that the mind of a man of science must be constituted differently from that of his fellow men; but if you will not be frightened by terms, you will discover that you are quite wrong, and that all these terrible apparatus are being used by yourselves every day and every hour of your lives.

There is a well-known incident in one of Moliere's plays, where the author makes the hero express unbounded delight on being told that he had been talking prose during the whole of his life [Le bourgeois gentilhomme]. In the same way, I trust, that you will take comfort, and be delighted with yourselves, on the discovery that you have been acting on the principles of inductive and deductive philosophy during the same period. Probably there is not one here who has not in the course of the day had occasion to set in motion a complex train of reasoning, of the very same kind, as that which a scientific man goes through in tracing the causes of natural phenomena. A very trivial circumstance will serve to exemplify this. Suppose you go into a fruiterer's shop, wanting an apple,--you take up one, and, on biting it, you find it is sour; you look at it, and see that it is hard and green. You take up another one, and that too is hard, green, and sour. The shopman offers you a third; but, before biting it, you examine it, and find that it is hard and green, and you immediately say that you will not have it, as it must be sour, like those that you have already tried.

Nothing can be more simple than that, you think; but if you will take the trouble to analyse and trace out into its logical elements what has been done by the mind, you will be greatly surprised. In the first place you have performed the operation of induction. You have found that, in two experiences, hardness and greenness in apples went together with sourness. It was so in the first case, and it was confirmed by the second. True, it is a very small basis, but still it is enough to make an induction from; you generalise the facts, and you expect to find sourness in apples where you get hardness and greenness. You found upon that a general law that all hard and green apples are sour; and that, as far as it goes, is a perfect induction. Well, having got your natural law in this way, when you are offered another apple which you find is hard and green, you say, 'All hard and green apples are sour; this apple is hard and green, therefore this apple is sour.' That train of reasoning is what logicians call a syllogism, and has all its various parts and terms,--its major premiss, its minor premiss and its conclusion. And, by the help of further reasoning, which, if drawn out, would have to be exhibited in two or three other syllogisms, you arrive at your final determination, 'I will not have that apple. 'So that, you see, you have, in the first place, established a law by induction, and upon that you have founded a deduction, and reasoned out the special particular case. Well now, suppose, having got your conclusion of the law, that at some time afterwards, you are discussing the qualities of apples with a friend: you will say to him, 'It is a very curious thing,--but I find that all hard and green apples are sour!' Your friend says to you, 'But how do you know that?' You at once reply, 'Oh, because I have tried them over and over again, and have always found them to be so.' Well, if we were talking science instead of common sense, we should call that an experimental verification. And, if still opposed, you go further, and say, 'I have heard from the people in Somersetshire and Devonshire, where a large number of apples are grown, that they have observed the same thing. It is also found to be the case in Normandy, and in North America. In short, I find it to be the universal experience of mankind wherever attention has been directed to the subject.' Whereupon, your friend, unless he is a very unreasonable man, agrees with you, and is convinced that you are quite right in the conclusion you have drawn. He believes, although perhaps he does not know he believes it, that the more extensive verifications are,--that the more frequently experiments have been made, and the results of the same kind arrived at,--that the more varied the conditions under which the same results are attained, the more certain is the ultimate conclusion. He sees that the experiment has been tried under all sorts of conditions, as to time, place, and people, with the same result; and he says with you, therefore, that the law you have laid down must be a good one, and he must believe it.


Source:

This text is part of the Internet Modern History Sourcebook. The Sourcebook is a collection of public domain and copy-permitted texts for introductory level classes in modern European and World history.

Unless otherwise indicated the specific electronic form of the document is copyright. Permission is granted for electronic copying, distribution in print form for educational purposes and personal use. If you do reduplicate the document, indicate the source. No permission is granted for commercial use of the Sourcebook.

(c)Paul Halsall May1998



The Internet History Sourcebooks Project is located at the History Department of  Fordham University, New York. The Internet Medieval Sourcebook, and other medieval components of the project, are located at the Fordham University Center for Medieval Studies.The IHSP recognizes the contribution of Fordham University, the Fordham University History Department, and the Fordham Center for Medieval Studies in providing web space and server support for the project. The IHSP is a project independent of Fordham University.  Although the IHSP seeks to follow all applicable copyright law, Fordham University is not the institutional owner, and is not liable as the result of any legal action.

© Site Concept and Design: Paul Halsall created 26 Jan 1996: latest revision 12 April 2024 [CV]